If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+900x+1800=0
a = 30; b = 900; c = +1800;
Δ = b2-4ac
Δ = 9002-4·30·1800
Δ = 594000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{594000}=\sqrt{3600*165}=\sqrt{3600}*\sqrt{165}=60\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(900)-60\sqrt{165}}{2*30}=\frac{-900-60\sqrt{165}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(900)+60\sqrt{165}}{2*30}=\frac{-900+60\sqrt{165}}{60} $
| 7,2/25=x/100 | | -2(x+10)=-8x+10 | | 4(x+3)=11x-53 | | b/9=3.3 | | 5x-10=(180-75) | | b/7=11.2 | | b/8=2.4 | | -8.3=p-5.6 | | 360=2x+2x+5+3x+10+3x-15+x+30 | | 16x+4=72 | | 720=2x+17+3x-25+2x+49+x+40+4x-17+3x-4 | | 360=2x+10+3x-5+2x+40 | | 180(n-2)=7020 | | 180(n-2)=3600 | | 0,6x(2)+5,9x-2.2=0 | | x+25=x-17 | | 1.76=d+1/3 | | 8x+17=-63 | | 3x/5+12=5x+6/5 | | 4(b-3)=5b-5 | | 64=9w-w | | 6u+3u=45 | | 49-6x=9+10x | | 5x+35=2x-35 | | 42/1+3e^2×=6 | | 11x2–7x= | | 2(3x–7)=16+6x | | p^2-p-4=0 | | x2+x-18=0 | | x^2+8-18=0 | | 3(7-x)=42 | | -126+63x=1071 |